Skip to contents

Given a forecast data frame, group it by all its grp_* columns.

Usage

group_all(df, ...)

Arguments

df

A forecast data frame

...

Additional arguments to be passed to dplyr::group_by() (e.x. .add, .drop)

Value

The grouped forecast data frame

Examples

# `{casteval}` exports an example data frame for grouping
casteval:::group_all(groups1)
#> # A tibble: 16 × 7
#> # Groups:   grp_variable, grp_province, grp_scenario [8]
#>     time grp_variable grp_province grp_scenario val_q5 val_q95 val_mean
#>    <dbl> <chr>        <chr>               <dbl>  <dbl>   <dbl>    <dbl>
#>  1     1 hosp         ON                      1     10      20       15
#>  2     1 case         ON                      1   1000    2000     1500
#>  3     1 hosp         QC                      1     11      21       16
#>  4     1 case         QC                      1   1100    2100     1600
#>  5     1 hosp         ON                      2     15      25       20
#>  6     1 case         ON                      2   1500    2500     2000
#>  7     1 hosp         QC                      2     16      26       21
#>  8     1 case         QC                      2   1600    2600     2100
#>  9     2 hosp         ON                      1     50      60       55
#> 10     2 case         ON                      1   5000    6000     5500
#> 11     2 hosp         QC                      1     51      61       56
#> 12     2 case         QC                      1   5100    6100     5600
#> 13     2 hosp         ON                      2     55      65       60
#> 14     2 case         ON                      2   5500    6500     6000
#> 15     2 hosp         QC                      2     56      66       61
#> 16     2 case         QC                      2   5600    6600     6100

dplyr::group_by(groups1, time) |> casteval:::group_all(.add=TRUE)
#> # A tibble: 16 × 7
#> # Groups:   time, grp_variable, grp_province, grp_scenario [16]
#>     time grp_variable grp_province grp_scenario val_q5 val_q95 val_mean
#>    <dbl> <chr>        <chr>               <dbl>  <dbl>   <dbl>    <dbl>
#>  1     1 hosp         ON                      1     10      20       15
#>  2     1 case         ON                      1   1000    2000     1500
#>  3     1 hosp         QC                      1     11      21       16
#>  4     1 case         QC                      1   1100    2100     1600
#>  5     1 hosp         ON                      2     15      25       20
#>  6     1 case         ON                      2   1500    2500     2000
#>  7     1 hosp         QC                      2     16      26       21
#>  8     1 case         QC                      2   1600    2600     2100
#>  9     2 hosp         ON                      1     50      60       55
#> 10     2 case         ON                      1   5000    6000     5500
#> 11     2 hosp         QC                      1     51      61       56
#> 12     2 case         QC                      1   5100    6100     5600
#> 13     2 hosp         ON                      2     55      65       60
#> 14     2 case         ON                      2   5500    6500     6000
#> 15     2 hosp         QC                      2     56      66       61
#> 16     2 case         QC                      2   5600    6600     6100