Package index
-
accuracy() - Get accuracy from quantiles
-
accuracy_help() - Calculate accuracy given a single quantile pair
-
apply_facets() - Apply facets to plot
-
bias() - Calculate forecast bias
-
calc_specified_time() - Calcuate relative/absolute time specified by user
-
create_forecast() - Create a forecast object
-
create_forecast_ensemble() - Create forecast from time vector and ensemble of realizations
-
crps() - Compute Continuous Ranked Probability Score for forecast
-
denmark2020df - Denmark 2020 COVID-19 forecast data frame
-
denmark2020ens - Denmark 2020 COVID-19 forecast ensemble
-
denmark2020fc - Denmark 2020 COVID-19 forecast object
-
denmark2020obs - Denmark 2020 COVID-19 observations
-
filter_forecast_time() - Isolate projected values from fit values
-
get_group_cols() - Get group column names
-
get_group_names() - Get group names of forecast data
-
get_plotting_groups() - Find the groups relevant to plotting
-
get_quant_col() - Get quantile column from data frame
-
get_quant_percentages() - Get quantile numbers from column names
-
get_quantile() - Obtain quantiles from data frame
-
get_time_point() - Get a row of a date frame for a given time
-
get_time_type() - Get type of data frame time column
-
group_all() - Group forecast data frame
-
groups1 - Grouping example forecast 1
-
groups2 - Grouping example forecast 2
-
groups_obs - Grouping example observations
-
has_groups() - Does the forecast data have groups?
-
integer_breaks() - Integer breaks on ggplot2 axes
-
is_forecast() - Is it a forecast?
-
is_valid_forecast() - Is it a valid forecast?
-
join_data() - Join two data frames
-
join_fcst_obs() - Join a forecast and observations into a single data frame
-
log_score() - Compute logarithmic score for forecast
-
log_score_approx_normal() - Logarithmic score for forecast assuming a normal distribution given paired quantiles.
-
make_accuracy() accuracy()function factory
-
make_log_score() log_score()function factory
-
pair_quantiles() - Pair up matching quantiles
-
parse_quant_pairs() - Parse quantile pair(s)
-
plot_KDE() - Plot the KDE used in
log_score()
-
plot_ensemble() - Plot ensemble of forecast realizations
-
plot_forecast() - Plot a forecast
-
plot_mean() - Plot forecast mean
-
plot_obs_score() - Plot and score against observations
-
plot_observations() - Plot observations
-
plot_quant_intervals() - Plot quantile intervals
-
plot_quantiles() - Plot forecast quantiles
-
quant_name() - Turn quantile number into column name
-
score() - Score forecasts
-
validate_column() - Check that column is in data frame
-
validate_data_frame() - Validate forecast data frame
-
validate_fcst_obs_pair() - Validate a forecast-observations pair
-
validate_forecast() - Validate forecast in named-list format
-
validate_group_names() - Validate forecast group names
-
validate_obs() - Validate observations data frame
-
validate_plotting_groups() - Check that groups can be plotted
-
validate_quant() - Validate a single quantile
-
validate_quant_name() - Validate quantile column name
-
validate_quant_order() - Make sure quantile values are logically possible
-
validate_quant_pair() - Validate quantile interval vector
-
validate_time() - Check that time compatible with forecast
-
validate_time_column() - Validate time column